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complicated systems. The time-independent wave function ψ(x) solutions must satisfy three conditions:

• ψ(x) must be a continuous function.

• The first derivative of ψ(x) with respect to space, dψ(x)/dx , must be continuous, unless V(x) = ∞ .

• ψ(x) must not diverge (“blow up”) at x = ±∞.

The first condition avoids sudden jumps or gaps in the wave function. The second condition requires the wave function to
be smooth at all points, except in special cases. (In a more advanced course on quantum mechanics, for example, potential
spikes of infinite depth and height are used to model solids). The third condition requires the wave function be normalizable.

This third condition follows from Born’s interpretation of quantum mechanics. It ensures that |ψ(x)|2 is a finite number so

we can use it to calculate probabilities.

Check Your Understanding Which of the following wave functions is a valid wave-function solution
for Schrӧdinger’s equation?

7.4 | The Quantum Particle in a Box

Learning Objectives

By the end of this section, you will be able to:

• Describe how to set up a boundary-value problem for the stationary Schrӧdinger equation

• Explain why the energy of a quantum particle in a box is quantized

• Describe the physical meaning of stationary solutions to Schrӧdinger’s equation and the
connection of these solutions with time-dependent quantum states

• Explain the physical meaning of Bohr’s correspondence principle

In this section, we apply Schrӧdinger’s equation to a particle bound to a one-dimensional box. This special case provides
lessons for understanding quantum mechanics in more complex systems. The energy of the particle is quantized as a
consequence of a standing wave condition inside the box.

Consider a particle of mass m that is allowed to move only along the x-direction and its motion is confined to the region

between hard and rigid walls located at x = 0 and at x = L (Figure 7.10). Between the walls, the particle moves freely.

This physical situation is called the infinite square well, described by the potential energy function

(7.31)U(x) =
⎧

⎩
⎨
0, 0 ≤ x ≤ L,
∞, otherwise.

Combining this equation with Schrӧdinger’s time-independent wave equation gives

(7.32)−ℏ2

2m
d2 ψ(x)

dx2 = Eψ(x), for 0 ≤ x ≤ L

where E is the total energy of the particle. What types of solutions do we expect? The energy of the particle is a positive
number, so if the value of the wave function is positive (right side of the equation), the curvature of the wave function is
negative, or concave down (left side of the equation). Similarly, if the value of the wave function is negative (right side of
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the equation), the curvature of the wave function is positive or concave up (left side of equation). This condition is met by
an oscillating wave function, such as a sine or cosine wave. Since these waves are confined to the box, we envision standing
waves with fixed endpoints at x = 0 and x = L .

Figure 7.10 The potential energy function that confines the
particle in a one-dimensional box.

Solutions ψ(x) to this equation have a probabilistic interpretation. In particular, the square |ψ(x)|2 represents the

probability density of finding the particle at a particular location x. This function must be integrated to determine the
probability of finding the particle in some interval of space. We are therefore looking for a normalizable solution that
satisfies the following normalization condition:

(7.33)
∫
0

L
dx|ψ(x)|2 = 1.

The walls are rigid and impenetrable, which means that the particle is never found beyond the wall. Mathematically, this
means that the solution must vanish at the walls:

(7.34)ψ(0) = ψ(L) = 0.

We expect oscillating solutions, so the most general solution to this equation is

(7.35)ψk(x) = Ak cos kx + Bk sin kx

where k is the wave number, and Ak and Bk are constants. Applying the boundary condition expressed by Equation 7.34

gives

(7.36)ψk(0) = Ak cos(k · 0) + Bk sin(k · 0) = Ak = 0.

Because we have Ak = 0 , the solution must be

(7.37)ψk(x) = Bk sin kx.

If Bk is zero, ψk (x) = 0 for all values of x and the normalization condition, Equation 7.33, cannot be satisfied.

Assuming Bk ≠ 0 , Equation 7.34 for x = L then gives

(7.38)0 = Bk sin(kL) ⇒ sin(kL) = 0 ⇒ kL = nπ, n = 1, 2, 3,...

We discard the n = 0 solution because ψ(x) for this quantum number would be zero everywhere—an un-normalizable

and therefore unphysical solution. Substituting Equation 7.37 into Equation 7.32 gives

(7.39)− ℏ2

2m
d2

dx2
⎛
⎝Bk sin(kx)⎞

⎠ = E⎛
⎝Bk sin(kx)⎞

⎠.

Computing these derivatives leads to

(7.40)E = Ek = ℏ2 k2

2m .
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According to de Broglie, p = ℏk, so this expression implies that the total energy is equal to the kinetic energy, consistent

with our assumption that the “particle moves freely.” Combining the results of Equation 7.38 and Equation 7.40 gives

(7.41)En = n2 π2 ℏ2

2mL2, n = 1, 2, 3, ...

Strange! A particle bound to a one-dimensional box can only have certain discrete (quantized) values of energy. Further, the
particle cannot have a zero kinetic energy—it is impossible for a particle bound to a box to be “at rest.”

To evaluate the allowed wave functions that correspond to these energies, we must find the normalization constant Bn . We

impose the normalization condition Equation 7.33 on the wave function

(7.42)ψn(x) = Bn sinnπx/L

1 = ∫
0

L
dx|ψn(x)|2 = ∫

0

L
dxBn

2 sin2 nπ
L x = Bn

2 ∫
0

L
dx sin2 nπ

L x = Bn
2 L

2 ⇒ Bn = 2
L.

Hence, the wave functions that correspond to the energy values given in Equation 7.41 are

(7.43)ψn(x) = 2
L sin nπx

L , n = 1, 2, 3, ...

For the lowest energy state or ground state energy, we have

(7.44)E1 = π2 ℏ2

2mL2, ψ1(x) = 2
L sin⎛

⎝
πx
L

⎞
⎠.

All other energy states can be expressed as

(7.45)En = n2 E1, ψn(x) = 2
L sin⎛

⎝
nπx
L

⎞
⎠.

The index n is called the energy quantum number or principal quantum number. The state for n = 2 is the first excited

state, the state for n = 3 is the second excited state, and so on. The first three quantum states (for n = 1, 2, and 3) of a

particle in a box are shown in Figure 7.11.

The wave functions in Equation 7.45 are sometimes referred to as the “states of definite energy.” Particles in these states
are said to occupy energy levels, which are represented by the horizontal lines in Figure 7.11. Energy levels are analogous
to rungs of a ladder that the particle can “climb” as it gains or loses energy.

The wave functions in Equation 7.45 are also called stationary states and standing wave states. These functions are

“stationary,” because their probability density functions, |Ψ(x, t)|2 , do not vary in time, and “standing waves” because

their real and imaginary parts oscillate up and down like a standing wave—like a rope waving between two children on a
playground. Stationary states are states of definite energy [Equation 7.45], but linear combinations of these states, such
as ψ(x) = aψ1 + bψ2 (also solutions to Schrӧdinger’s equation) are states of mixed energy.
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Figure 7.11 The first three quantum states of a quantum particle in a box for principal quantum
numbers n = 1, 2, and 3 : (a) standing wave solutions and (b) allowed energy states.

Energy quantization is a consequence of the boundary conditions. If the particle is not confined to a box but wanders freely,
the allowed energies are continuous. However, in this case, only certain energies (E1, 4E1, 9E1, …) are allowed. The

energy difference between adjacent energy levels is given by

(7.46)ΔEn + 1, n = En + 1 − En = (n + 1)2 E1 − n2 E1 = (2n + 1)E1.

Conservation of energy demands that if the energy of the system changes, the energy difference is carried in some other
form of energy. For the special case of a charged particle confined to a small volume (for example, in an atom), energy
changes are often carried away by photons. The frequencies of the emitted photons give us information about the energy
differences (spacings) of the system and the volume of containment—the size of the “box” [see Equation 7.44].

Example 7.8

A Simple Model of the Nucleus

Suppose a proton is confined to a box of width L = 1.00 × 10−14 m (a typical nuclear radius). What are the

energies of the ground and the first excited states? If the proton makes a transition from the first excited state to
the ground state, what are the energy and the frequency of the emitted photon?

Strategy

If we assume that the proton confined in the nucleus can be modeled as a quantum particle in a box, all we need

to do is to use Equation 7.41 to find its energies E1 and E2 . The mass of a proton is m = 1.76 × 10−27 kg.
The emitted photon carries away the energy difference ΔE = E2 − E1. We can use the relation E f = h f to find

its frequency f.

Solution

The ground state:

E1 = π2 ℏ2

2m L2 = π2 (1.05 × 10−34 J · s)2

2(1.67 × 10−27 kg) (1.00 × 10−14 m)2 = 3.28 × 10−13 J = 2.05 MeV.
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The first excited state: E2 = 22 E1 = 4(2.05 MeV) = 8.20 MeV .

The energy of the emitted photon is E f = ΔE = E2 − E1 = 8.20 MeV − 2.05 MeV = 6.15 MeV .

The frequency of the emitted photon is

f =
E f
h = 6.15 MeV

4.14 × 10−21 MeV · s
= 1.49 × 1021 Hz.

Significance

This is the typical frequency of a gamma ray emitted by a nucleus. The energy of this photon is about 10 million
times greater than that of a visible light photon.

The expectation value of the position for a particle in a box is given by

(7.47)
〈 x 〉 = ∫

0

L
dxψn* (x)xψn(x) = ∫

0

L
dxx|ψn* (x)|2 = ∫

0

L
dxx2

Lsin2 nπx
L = L

2.

We can also find the expectation value of the momentum or average momentum of a large number of particles in a given
state:

(7.48)
〈 p 〉 = ⌠

⌡
0

L
dxψn* (x)⎡⎣−iℏ d

dxψn(x)⎤⎦

= −iℏ⌠
⌡
0

L
dx 2

L sin nπx
L

⎡
⎣

d
dx

2
L sin nπx

L
⎤
⎦ = −i2ℏ

L ∫
0

L
dx sin nπx

L
⎡
⎣
nπ
L cos nπx

L
⎤
⎦

= −i2nπℏ
L2 ∫

0

L
dx1

2 sin 2nπx
L = −inπℏ

L2
L

2nπ ∫
0

2πn
dφ sin φ = −i ℏ

2L · 0 = 0.

Thus, for a particle in a state of definite energy, the average position is in the middle of the box and the average momentum
of the particle is zero—as it would also be for a classical particle. Note that while the minimum energy of a classical particle
can be zero (the particle can be at rest in the middle of the box), the minimum energy of a quantum particle is nonzero and
given by Equation 7.44. The average particle energy in the nth quantum state—its expectation value of energy—is

(7.49)En = 〈 E 〉 = n2 π2 ℏ2

2m .

The result is not surprising because the standing wave state is a state of definite energy. Any energy measurement of this
system must return a value equal to one of these allowed energies.

Our analysis of the quantum particle in a box would not be complete without discussing Bohr’s correspondence principle.
This principle states that for large quantum numbers, the laws of quantum physics must give identical results as the laws
of classical physics. To illustrate how this principle works for a quantum particle in a box, we plot the probability density
distribution

(7.50)|ψn(x)|2 = 2
Lsin2(nπx/L)

for finding the particle around location x between the walls when the particle is in quantum state ψn . Figure 7.12 shows

these probability distributions for the ground state, for the first excited state, and for a highly excited state that corresponds
to a large quantum number. We see from these plots that when a quantum particle is in the ground state, it is most likely to be
found around the middle of the box, where the probability distribution has the largest value. This is not so when the particle
is in the first excited state because now the probability distribution has the zero value in the middle of the box, so there is
no chance of finding the particle there. When a quantum particle is in the first excited state, the probability distribution has
two maxima, and the best chance of finding the particle is at positions close to the locations of these maxima. This quantum
picture is unlike the classical picture.
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Figure 7.12 The probability density distribution |ψn(x)|2 for a quantum particle in a box for: (a)

the ground state, n = 1 ; (b) the first excited state, n = 2 ; and, (c) the nineteenth excited state,

n = 20 .

The probability density of finding a classical particle between x and x + Δx depends on how much time Δt the particle

spends in this region. Assuming that its speed u is constant, this time is Δt = Δx/u, which is also constant for any location

between the walls. Therefore, the probability density of finding the classical particle at x is uniform throughout the box, and
there is no preferable location for finding a classical particle. This classical picture is matched in the limit of large quantum
numbers. For example, when a quantum particle is in a highly excited state, shown in Figure 7.12, the probability density
is characterized by rapid fluctuations and then the probability of finding the quantum particle in the interval Δx does not

depend on where this interval is located between the walls.

Example 7.9

A Classical Particle in a Box

A small 0.40-kg cart is moving back and forth along an air track between two bumpers located 2.0 m apart.
We assume no friction; collisions with the bumpers are perfectly elastic so that between the bumpers, the car
maintains a constant speed of 0.50 m/s. Treating the cart as a quantum particle, estimate the value of the principal
quantum number that corresponds to its classical energy.

Strategy

We find the kinetic energy K of the cart and its ground state energy E1 as though it were a quantum particle. The

energy of the cart is completely kinetic, so K = n2 E1 (Equation 7.45). Solving for n gives n = (K/E1)1/2 .

Solution

The kinetic energy of the cart is

K = 1
2mu2 = 1

2(0.40 kg)(0.50 m/s)2 = 0.050 J.

The ground state of the cart, treated as a quantum particle, is
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7.7

E1 = π2 ℏ2

2mL2 = π2 (1.05 × 10−34 J · s)2

2(0.40 kg)(2.0 m)2 = 1.700 × 10−68 J.

Therefore, n = (K/E1)1/2 = (0.050/1.700 × 10−68)1/2 = 1.2 × 1033 .

Significance

We see from this example that the energy of a classical system is characterized by a very large quantum
number. Bohr’s correspondence principle concerns this kind of situation. We can apply the formalism of quantum
mechanics to any kind of system, quantum or classical, and the results are correct in each case. In the limit of
high quantum numbers, there is no advantage in using quantum formalism because we can obtain the same results
with the less complicated formalism of classical mechanics. However, we cannot apply classical formalism to a
quantum system in a low-number energy state.

Check Your Understanding (a) Consider an infinite square well with wall boundaries x = 0 and

x = L . What is the probability of finding a quantum particle in its ground state somewhere between x = 0 and

x = L/4 ? (b) Repeat question (a) for a classical particle.

Having found the stationary states ψn(x) and the energies En by solving the time-independent Schrӧdinger equation

Equation 7.32, we use Equation 7.28 to write wave functions Ψn(x, t) that are solutions of the time-dependent

Schrӧdinger’s equation given by Equation 7.23. For a particle in a box this gives

(7.51)Ψn(x, t) = e−iωn t ψn(x) = 2
Le−iEn t/ℏ sin nπx

L , n = 1, 2, 3, ...

where the energies are given by Equation 7.41.

The quantum particle in a box model has practical applications in a relatively newly emerged field of optoelectronics,
which deals with devices that convert electrical signals into optical signals. This model also deals with nanoscale physical
phenomena, such as a nanoparticle trapped in a low electric potential bounded by high-potential barriers.

7.5 | The Quantum Harmonic Oscillator

Learning Objectives

By the end of this section, you will be able to:

• Describe the model of the quantum harmonic oscillator

• Identify differences between the classical and quantum models of the harmonic oscillator

• Explain physical situations where the classical and the quantum models coincide

Oscillations are found throughout nature, in such things as electromagnetic waves, vibrating molecules, and the gentle back-
and-forth sway of a tree branch. In previous chapters, we used Newtonian mechanics to study macroscopic oscillations,
such as a block on a spring and a simple pendulum. In this chapter, we begin to study oscillating systems using quantum
mechanics. We begin with a review of the classic harmonic oscillator.

The Classic Harmonic Oscillator
A simple harmonic oscillator is a particle or system that undergoes harmonic motion about an equilibrium position, such as
an object with mass vibrating on a spring. In this section, we consider oscillations in one-dimension only. Suppose a mass
moves back-and-forth along the

x-direction about the equilibrium position, x = 0 . In classical mechanics, the particle moves in response to a linear

restoring force given by Fx = −kx, where x is the displacement of the particle from its equilibrium position. The motion

takes place between two turning points, x = ±A , where A denotes the amplitude of the motion. The position of the object

varies periodically in time with angular frequency ω = k/m, which depends on the mass m of the oscillator and on the
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